Publications from ICB Lab are listed below in reverse chronology:

  1. Sewanan L.R., Park J., Rynkiewicz M.J., Racca A.W., Papoutsidakis N., Schwan J., Jacoby D.L., Moore J.R. Lehman W., Qyang Y., and Campbell S.G. (2021). Loss of crossbridge inhibition drives pathological cardiac hypertrophy in patients harboring the TPM1 E192K mutation. Journal of General Physiology. 153: e202012640.

  2. Shen S., Sewanan L.R., and Campbell S.G. (2021). Evidence for synergy between sarcomeres and fibroblasts in an in vitro model of myocardial reverse remodeling. Journal of Molecular and Cellular Cardiology. 158:11-55.

  3. Shen S., Sewanan L.R., Jacoby D.L., and Campbell S.G. (2021). Danicamtiv enhances systolic function and Frank-Starling behavior at minimal diastolic cost in engineered human myocardium. Journal of the American Heart Association. 10: e020860.

  4. Creso J.G. & Campbell S.G. (2021). Potential impacts of the cardiac troponin I mobile domain on myofilament activation and relaxation. Journal of Molecular and Cellular Cardiology. 155:50-57

  5. Sewanan L.R., Shen S., and Campbell S.G. (2021). Mavacamten preserves length-dependent contractility and improves diastolic function in human engineered heart tissue. American Journal of Physiology – Heart and Circulatory Physiology. 320:H1112-H1123.

  6. Ng R., Sewanan L., Stankey P., Li X., Qyang Y., and Campbell S.G. (2021). Shortening Velocity Causes Myosin Isoform Shift in Human Engineered Heart Tissue. Circulation Research. 128:281-283.

  7. Clark J.A., Sewanan L.R., Schwan J., Kluger J., Campbell K.S., and Campbell S.G. (2021). Fast-relaxing cardiomyocytes exert a dominant role in the relaxation behavior of heterogeneous myocardium. Archives of Biochemistry and Biophysics. 697:108711.

  8. Park, Jinkyu; Anderson, Christopher W.; Sewanan, Lorenzo R.; Kural, Mehmet H.; Huang, Yan; Luo, Jiesi; Gui, Liqiong; Riaz, Muhammad; Lopez, Colleen A.; Ng, Ronald; Das, Subhash K.; Wang, Juan; Niklason, Laura; Campbell, Stuart G.; Qyang, Yibing (2020). Modular design of a tissue engineered pulsatile conduit using human induced pluripotent stem cell-derived cardiomyocytes. Acta Biomaterialia. 102:220-230.

  9. Ng, Ronald; Sewanan, Lorenzo R.; Brill, Allison L.; Stankey, Paul; Li, Xia; Qyang, Yibing; Ehrlich, Barbara E.; Campbell, Stuart G. (2020). Contractile work directly modulates mitochondrial protein levels in human engineered heart tissues. American Journal of Physiology-Heart and Circulatory Physiology. 318:6 (H1516-H1524).

  10. Campbell, Kenneth S.; Chrisman, Brianna Sierra; Campbell, Stuart G. (2020). Multiscale modeling of cardiovascular function predicts that the End-Systolic Pressure Volume Relationship can be targeted via multiple therapeutic strategies. Frontiers in physiology. 11:1043.

  11. Ng, Ronald; Sewanan, Lorenzo; Stankey, Paul; Li, Xia; Qyang, Yibing; Campbell, Stuart (2020). Shortening Velocity Causes Myosin Isoform Shift in Human Engineered Heart Tissues. Circulation Research.

  12. Clark J.A., Weiss J.D., and Campbell S.G. (2019).A Microwell Cell Capture Device Reveals Variable Response to Dobutamine in Isolated Cardiomyocytes. Biophysical Journal7: 1258-1268.

  13. Ma Y., Su K.N., Pfau D., Rao V.S., Wu X., Hu X., Leng L., Du X., Piecychna M., Bedi K., Campbell S.G., Eichmann A., Testani J.M., Margulies K.B., Bucala R., and Young L.H. (2019). Cardiomyocyte d-dopachrome tautomerase protects against heart failure. JCI Insight. 4:e128900

  14. Ng R., Manring H., Papoutsidakis N., Albertelli T., Tsai N., See C.J., Li X., Park J., StevensT.L., Bobbili P.J.,  Riaz M., Ren Y., Stoddard C.E., Janssen P.M.L., Bunch T.J., Hall S.P., Lo Y.C., Jacoby D.L.*, Qyang Y.*, Wright N.*, Ackermann M.A.*, Campbell S.G.* (2019). Patient Mutations Linked to Arrhythmogenic Cardiomyopathy Enhance Calpain-Mediated Desmoplakin Degradation. JCI Insight. 4:e128643.

    *Co-corresponding authors

  15. Lehman W., Moore J.R., Campbell S.G., and Rynkiewicz M.J. (2019). The Effect of Tropomyosin Mutations on Actin-Tropomyosin Binding: In Search of Lost Time. Biophysical Journal. 116:2275-2284.

  16. Sewanan L.R., Schwan J., Kluger J., Park J., Jacoby D.L., Qyang Y., and Campbell S.G. (2019). Extracellular Matrix from Hypertrophic Myocardium Provokes Impaired Twitch Dynamics in Healthy Cardiomyocytes. Journal of the American College of Cardiology: Basic to Translational Science4:495–505.

  17. Sewanan L.R. and Campbell S.G. (2019). Modeling sarcomeric cardiomyopathies with human cardiomyocytes derived from induced pluripotent stem cells. Journal of Physiology142909-2922.

  18. Campbell S.G., Qyang Y., and Hinson J.T. (2019). Sarcomere-Directed Calcium Reporters in Cardiomyocytes: Putting Sensors Where Sensing Makes Sense. Circulation Research. 124:1151-1153.

  19. Niederer S.A., Campbell K.S., Campbell S.G. (2019). A short history of the development of mathematical models of cardiac mechanics. Journal of Molecular and Cellular Cardiology. 127:11-19.

  20. Clark J.A. and Campbell S.G. (2019). Diverse relaxation rates exist among rat cardiomyocytes isolated from a single myocardial region. Journal of Physiology. 597:711-722.

  21. Lehman W., Li X., Kiani F.A., Moore J.R., Campbell S.G., Fischer F., and Rynkiewicz M.J. (2018). Precise Binding of Tropomyosin on Actin Involves Sequence-Dependent Variance in Coiled-coil Twisting. Biophysical Journal. 115:1082-1092.

  22. Campbell K.S., Janssen P.M.L., and Campbell S.G. (2018). Force-Dependent Recruitment from the Myosin Off State Contributes to Length-Dependent Activation. Biophysical Journal. 115:543-553.

  23. Luo J., Qin L., Kural M.H., Schwan J., Li X., Bartulos O., Cong X., Ren Y., Gui L., Li G., Ellis M.W., Li P., Kotton D.N., Dardik A., Pober J.S., Tellides G., Rolle M., Campbell S.G., Hawley R.J., Sachs D.A., Niklason L.E., and Qyang Y. (2017). Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering. Biomaterials. 147:116-132.

  24. Yi J.S., Huang Y., Kwaczala A.T., Kuo I.Y., Ehrlich B.E., Campbell S.G., Giordano F.J., and Bennett A.M. (2016). Low dose dasatinib rescues cardiac function in Noonan syndrome. JCI Insight. 1:e90220.

  25. Sewanan L.R., Moore J.R., Lehman W. and Campbell S.G. (2016). Predicting Effects of Tropomyosin Mutations on Cardiac Muscle Contraction through Myofilament Modeling. Frontiers in Physiology. 7:473.

  26. Schwan J., Kwaczala A.T., Ryan T.J., Bartulos O., Ren Y., Sewanan L.R., Morris A.H., Jacoby D.L., Qyang Y., and Campbell S.G. (2016). Anisotropic engineered heart tissue made from laser-cut decellularized myocardium. Scientific Reports. 6:32068(1-12).

  27. Aboelkassem Y. and Campbell S.G. (2016). Acute optogenetic modulation of cardiac twitch dynamics explored through modeling. Journal of Biomedical Engineering. 138:111005(1-11).

  28. Wang C., Schwan J., and Campbell S.G. (2016). Slowing of Contractile Kinetics by Myosin-Binding Protein C Can Be Explained by Its Cooperative Binding to the Thin Filament. Journal of Molecular and Cellular Cardiology. 96:2-10.

  29. Dash B.C., Levi K., Schwan J., Luo J., Bartulos O., Wu H., Qiu C., Yi T., Ren Y., Campbell S.G., Rolle M.W., and Qyang Y. (2016). Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells. Stem Cell Reports. 7:19-28. 


  30. Moore J.R., Campbell S.G., and Lehman W. (2016). Structural determinants of muscle thin filament cooperativity. Archives of Biochemistry and Biophysics. 594:8-17.

  31. Balestrini J.L., Gard A.L., Liu A., Leiby K.L., Schwan J., Kunkemoeller B., Calle E.A., Sivarapatna A., Lin T., Dimitrievska S., Campbell S.G., and Niklason L.E. (2015). Production of decellularized porcine lung scaffolds for use in tissue engineering. Integrative Biology. 7:1598-1610.

  32. Aboelkassem Y., Bonilla J., McCabe K., and Campbell S.G. (2015). Contributions of Ca2+-Independent Thin Filament Activation to Cardiac Muscle Function. Biophysical Journal. 109:2101-2112.

  33. Schwan J. and Campbell S.G. (2015). Prospects for in Vitro Myofilament Maturation in Stem Cell-Derived Cardiac Myocytes. Biomarker Insights. 10:91-103.

  34. Aboelkassem Y., Savic D., Campbell S.G. (2015). Mathematical Modeling of Aortic Valve Dynamics During Systole. Journal of Theoretical Biology. 360:280-288.

  35. Kuo I.Y., Kwaczala A.T., Nguyen L., Russell K.S., Campbell S.G., Ehrlich B.E. (2014). Decreased polycystin 2 expression alters calcium-contraction coupling and changes β-adrenergic signaling pathways. Proceedings of the National Academy of Sciences. 111:16604–16609.